Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection

نویسندگان

  • Bo Li
  • Xiao-Yong Zhang
  • Jian-Zhong Yang
  • Yu-Jie Zhang
  • Wen-Xin Li
  • Chun-Hai Fan
  • Qing Huang
چکیده

In this study, we assessed the in vivo behavior and toxicology of nanoscale graphene oxide (NGO) in mice after intravenous injection. The influence of a polyethylene glycol (PEG) coating on the distribution and toxicity of the NGO was also investigated. The results show that NGO is mainly retained in the liver, lung, and spleen. Retention in the lung is partially due to NGO aggregation. The PEG coating reduces the retention of NGO in the liver, lung, and spleen and promotes the clearance of NGO from these organs, but NGO and NGO-PEG are still present after 3 months. The PEG coating effectively reduces the early weight loss caused by NGO and alleviates NGO-induced acute tissue injuries, which can include damage to the liver, lung, and kidney, and chronic hepatic and lung fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles

Objective(s): The wide scale use of Zinc oxide nanoparticles (ZnO NPs) in the consumer market world makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. Therefore, the aim of the present study is to assess renal toxicity potential of ZnO and Polyethylene glycol Coated ZnO Nanoparticles in rat.Materials and Methods: Co-precipitation chemical method was used...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings.

Fluorescent nanoparticles containing a gadolinium oxide core are very attractive because they are able to combine both imaging (fluorescence imaging, magnetic resonance imaging) and therapy (X-ray therapy and neutron-capture therapy) techniques. The exploitation of these multifunctional particles for in vivo applications requires accurate control of their biodistribution. The postfunctionalizat...

متن کامل

In vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide

Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...

متن کامل

Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014